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STOCHASTIC PROGRAMMED DESIGN .
FOR A DETERMINISTIC POSITIONAL DIFFERENTIAL GAME

A.N. KRASOVSKII, N.N. KRASOVSKII and V.E. TRET'IAKOV

It is shown that under specific sufficiently general conditions the value of a posi-
tional differential game can be found from auxiliary programmed constructions which
include a suitable random process. The paper is a continuation of the researches in
/1—12/.

1. We consider a system described by the differential equation
X=A@t)x+-But+Ct)v, usSP, v, tHL<t<d

where X is the object's 2n-dimensional phase vector, u and v are, respectively, an 7 -dimens-
ional and an $-dimensional control vectors of the first and second players, A4 (f), B (t), C ()
are continuous matrix-valued functions, and P and @ are convex compacta. Let the functional

o
Y= (x(te 10, uE 119, v 1) = (0@ x 1) + o1, ulth + o2 ¢, v DIt + 0 (x (9 (1.1)

be prescribed. Here and below the symbol yt.(t, [-]t*) denotes the function {yltl, {, <t < 1%},
(t,, t*] C (2, O]; the functions @, w;, w, and G are continuous; the functions ® and o satisfy
Lipschitz conditions in X. By intent, the first player must minimize functional ¥y and the
second must maximize it. The game is formalized as follows. In (r 4 1)-dimensional and (s + 1)-
dimensional spaces, respectively, we consider the sets

P* (1) = co {u* = {u, &; (f, )}, u e P)
Q% () = co{v* = {v, 0 (t, V)}, vE= Q)
and we introduce the new control vectors u®* = {u = {u,*, ..., u*}, u}y}, v* = {v = {v*, .. ., v,%), v}
constrained by the conditions
wt & P* (1), v* = Q* (1) (1.2)

A function which with every possible position {f{, X} associates a certain set § (¢, x) (pos-
sibly, empty) of pairs s = {u*, v*} of vectors u* and v* from (1.2), is called a strategy § (¢, x),

Every absolutely continuous function x ¢}, x[z,] = Xy satisfying the condition

XM =A4@0xt] +B@®ull +C ()i (1.3
where

(u* [t = (u gl o (8}, V¥ =Vt Via ) = st € S (¢, x () (1.4)

for almost all te lt,, t*], is called a motion «x (¢, [-]¢t*) generated by strategy S (¢, X) from the
position {t,, x,}. We assume that

0
=P (x(ta [ 19), 0 (1, [-19), v* (04 [-19)) = { [0t x [1]) -+ whiy [1) + vha 11t + 0 (x [B)) (1.5)
e

on the motion given. A strategy S (¢, x) that satisfies the following condition 1s called first
player's strategy Sy (t,Xx) . For any segment t, <Lt<(t*, position {t,,x,} and t -measurable admis-
sible function v*{t,[-1t*) we can find a ¢ -measurable admissible function u* (t, [-1t*) such
that the function x(f, [-]1¢*) satisfying (1.3) and the condition xI[tJ]=x, is the motion gener-
ated by the strategy S(t.x) = S, (¢, x), i.e., condition (1.4) with § = §, 1is satisfied for it
for almost all t&|[¢,, t*]. The second player's strategy S, (t, x) is defined analogously.

We say that strategies §,; and §, are compatible if for every choice of {t.,x,} and (1, t*]
there exists a function x (f, {-]t*) which is simultaneously the motion generated by both strategy
S. and strategy S, . We say that compatible strategies §,° and §,° form a saddle point of the
game at the minimax of the functional y of (1.1) , (1.5) and form the game's value p° (¢ x), if
for every initial position {ter Zu} the inequality '

*Prikl.Matem.Mekhan. ,45,4,579-586,1981
425



426 A.N. Krasovskii, N.N. Krasovskii and v.E. Tret'iakov

PIX(te [-10), u* (t, [-]8), v (L, 11 0) < p ULy Xy)
is valid for every motion «x{f,[.]®) generated by strategqy §,° and the inequality

VO [ ]9), u* (1, 1-]9), Vot [-19) >p(e,, x,)
is valid for every motion x {t, [-]19) generated by strategy S,°. So, the eguality ¥ -~ p (te. X,)
is fulfilled for the motion generated simultaneously by strategies S,° and S,°.

The significance of the formalization given is revealed in terms of the approximate strat-

egies. A function u (¢, X, €)= P (v ({.x,¢)= Q), where &£>>0 is a small parameter, is called the
first (second) player's approximate strategy. Suppose that &, a position {t,, x,}. an interval

[t,, t*] and a partitioning A = {1, = {,.7,,, > T;, T {*} have been chosen. The absolutely
continuous solution of the stepwise equation

Xa{t)=A(O)xs [t] + B ulr;, za? [1;], €)= (1) v i8]
Xatftyl=x,. 1, <t <y, i=0,1,. .. . m—1

where the function v [tJ& @ can be any measurable function, is called the {¢, A}-motion
Naf (t, |- t*) generated by strategy u({, x.¢). The {g, A}-motion generated by strategy v (¢, x, &)
is defined analogously.

We shall examine only the motions x(f,{-]1/*) and «x,t{t, {-]t*) starting in the regions

xft.j:x,EG[t,]:(}x['\'gr(t*)) (1.6)
r(t,) = lro + (f + g)/L) exp L {t, — t,) — (f + g)/L
f=max | B(u|. g =max [C () v ]|, L =max|A ()]

where|x | is the Euclidean norm of vector % and | A4 ()| is the Euclidean norm of matrix 4 (t).
For such motions the inclusion x[fl & G[t] is valid for all te1{t,, {*] . We say that strategy
u {f, x, €) approximates strategy Su(f,x) if for any >0 we can find e({)>0and 8§ (L, ¢e) >0
such that for any ({e, A}-motion Xs®(f,%{-]8) generated by strategy u (, z,¢) we can find, when
e < e(l) and max; (1., — 1) {8 (L &), a motion x (¢, [-10) generated by strategy S, (/, x), satis-
fying the conditions
[V (%a® (xS [-10), u(LE]10), V(110D - V(X [-10) u* @ l-] D), V(-] O)| L
“t"tttlgg’ max ierlﬂ—‘xltHg‘:» r,:max(t,’,t,)
TeSIS0
The following statement is valid.

Theorem 1.1. The game being examined on the minimax cf functional (1.1}, (1.5} has the
saddle point {§°, S,°}. The game's value p°(f,x) satisfies a Lipschitz condition in f and X
in the region G={x&Glt],t, <t < 8). The optimal strategies §,° and S, are approximated
by suitable optimal strategies u’(f,x,€) and ve (L, x, €).

The approximate strategies u°(, x, g) and v° (I, x, £) are constructed by the scheme in /7,8/
as strategies extremal to the function p (f, W, Wpiy) = p° (¢, W) -+ wg,, , Where the variables w[{]
and Wy, [t] describing the state of the W-model vary in accord with the equations

w=A)w+ Bt)u, +C{t) vy, u,EP, v,E0Q (L.7)

Wy = O (8, W) + o (1, u,) + 02 (8 vy) (1.8)

Here P (te» Wer Wnaa) is the exact upper bound of the values of f for which there exists 1in the
w-model (1.7), (1.8) exists a (B — Qi,. w..w,,,,1) -Procedure /7/ ensuring the inequality w,,, {8}
+o(wleh) > 8 for every motion {wlt], w,., [t]}, t, <{ t { &, generated by this Q-procedure
from the initial position {t., Woy Wnare)- In this regard the accompanying point /8/ in the w-
model {w (f, x, ¢€), ¢ (t, x, &)}, corresponding to the current position {t, x}, is determined, when con-
structing the strategy wu°(t, x,:), from the condition minw,e [p° (£ W) — el =p°lt,wit, x, 8)] — (s,
x, &) under the condition

|x —w P+ er<le(d = (t-- L)) exp (BL [t — t,)) (1.9)
or, when constructing the strategy v° (t, x, €) , from the condition
maX e o 107 (8, W) — ¢l = p UL, W(t,x, &)] —c (L, %, 8)

under condition (1.9). As a result the extremal strategies u° (¢, x, &) and v° (t.x, ) are deter-
mined from the conditions
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Q' {t, x, ) {x — Wit x, e} +c{t, x, 8) o (£, 0’ {t, x, 8)) = minyep Idem (0°{f, x, 8} —u)
Yt %, 8) [x— W{EX, )] + e, 5, &) wa(t, V7 (£, X, £)) =Mmibyeg ldem (v*(t.x, e} —v)

where <a-b) is the scalar product of vectors a and b. Here and further the Idem in anequal-
ity's right-hand side denotes an expression coinciding with this equality's left-hand side
with the change of symbols indicated within the parentheses,

The strategies §,°(t,x) and §,° (4, x) are determined as follows. For a current position
{t.x} the strategy S§.°(t, x) fixes the set of all pairs = = {u*, v*}, u* = P* (1), v* = Q* (1),
satisfying the condition

— e — O (t, .
Tim L(l;.!{ﬂ}r_f’.‘__‘_’.+ 0, X) + ulyy vk, < 0 (1.10)
T t—0

while strategy Sy (4, x) fixes for a position {t,x} the set of all pairs s = {u*, v*},u* & P* (4,
v* ez Q% (1), satisfying the condition

: ° {1, 3 - " {2

lim EEYD 00D | 3 4wk + 08, >0 (1.11)

e
Here ylt] is a function defined by the equality

ylil=x+G—-lA@Ox+BBHue+C@ vl vt

Here, obviously, conditions (1.10) and (1.11l) replace the well-known dynamic programming rela-
tions /13,14/ which would holds in the case of a differentiable value p°(t,x) satisfying the
partial differential equation of the dynamic programming method.

2. The construction of the game's value 0°(f, X) by the ( ~procedure indicated in Sect.l

is not effective in general. Therefore, neither is the construction of strategies u’ (£, x, €),
v (t, x,£), §.°(f, x), §,° (£, x) by this means. The method of constructing the game's value p° (¢, X)

and the optimal strategies on the basis of auxiliary programmed constructions /6,8/ is more
effective. However, this method yields the required solution only under definite regularity
conditions /8/. Below we describe a certain development of the method of programmed construct-
ions, which permits us to cover a wider circle of problems. However, a certain additional
element, in the form of a suitable probability process, is introduced into the auxiliary prog-
ramned constructions being developed. We shall assume that the functions (£ x) and o (x) are
convex in X.

Thus, we consider a w*-model whose current state w* = {w = {*, ..., »,*}, wh,} is des~
cribed, in accord with (1.7), (1.8), by the equations

W=A@OWEBOuTCOY, wl oW+l ol WEPHY), VEQH0)

Suppose that some initial position {f,,w,*}= {f,, {w,,0}}, f, <9, w, & GIl¢,] has been chosen. We

partition the interval {t,, #] by the points t; = t, + 0 — t*]. (i — 1)/};, i=1,2, ..., k, where

k is some sufficiently large integer. We consider a sequence of independent vector-valued
random variables (. j=1,2,...,n},i=1,2,. k. Each of the variables {/ can take one of
the two values E(i+ — { and E - == -.{ with equal probabilities p* =1, and p~ =1, A func-
tion of t and § = {{;¥} with values v*(2;,8) = Q*(t;) is called a stochastic nonanticipatory pro-
gram V*{, §)}; it possesses the property that for < Ct<< iy, t=1,2, ..,k ;=0 we have
v¥ (L, E) = v* (f;, L lt,, £;]), where the symbol Eli,, ;] denotes the reallzatlon {89, 1=1,2,...,n
s=1,2,...,i} The stochastic nonanticipatory program u* {f, §) & P* (1) is defined analogous~
1ly.

Suppose that an initial position {f,, W,} has been given and that a specific value of k
and a pair of programs {u*(.,:),v* (-, )} have been chosen. These data define a random process
w(t, [, E]®) which is a stepwise solution of the differential equation

W=A{fw+BMul B+ CEHVEE

(2.1)
with the initial condition wlt} = w,. This process w(f, [., §] ) and the controls ¥, (¢, b),
v¥, (t, £) determine the random value of the functional y (&) in (1.5):
VE=7(Wlts [, 519), u* (6 [, E19), v* (£, (-, E]9)) = Wha [8] + o (W[D]) (2.2)

We consider the function

Ly Wy)=1i
Px (Ler Wy iilg(axmm M{yE) (2.3
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where the symbol M {y} denotes the mathematical expectation. The definition (2.3) of the
function p, ({,w) is well posed. As a matter of fact, the minimum and the maximum in the
right-hand side of (2.3) are actually reached on certain programs y* (-,-) and v* (., ) since

M {y (§)} is a continuous function of a finite number of variables, specified on a compactum.
The existence of the limit in (2.3) is established during the proof of the next Theorem 2.1.

Theorem 2.1. The function p, (t, W) in (2.3) is the value p°(f,w) of the positional dif-
ferential game considered in Sect.l.
The theorem is proved as follows. 1In the region

lz 1< 2r(®), t, <l (2.4

where r(#) is computed by (1.6), we construct the function

Ho(p,z,t)= min  max [(p-[A{)z+ Bt)u + C@VD +@(t,2) + ufy + v —a| v* ]3]
ure Pr(t) vre QU(1)
where @ is some small positive number. Further, we construct the function Fq (p. z, t) which has
derivatives of all orders, satisfies a Lipschitz condition in the first argument and vanishes
outside a sufficiently large region G* in space {t,z}, containing region (2.4). 1In addition,
let the condition
[Ho(poz, 8) ~ Fa(p,z.t) | < @

be fulfilled for all values of arguments p and 2,! fromregion (2.4). Let us consider the part-
ial differential equation for a certain function p, (¢, 2):

n

ap, ] Y, .
6(a J‘_aTZ d9z.% = Fo(grad, pa, 2,t) =0 (2.5)

=]

Let ¢ (z,a) be a function convex in z for |z |<(2r(8), having derivatives of all ordexrs, sat-
isfying the condition|o (z) — 0 (z, «) | {a when |z |<{2r(8) and vanishing for all sufficient-

ly large values of |z |. Under the boundary condition

Pa (0, 2) = 0 (z,a) (2.6)
Eq. (2.5) has /15/ a solution pe (f,z) which in any preselected region |z | < R, t, <t <% nas
the continuous partial derivatives dpa/dt, 0pa/0z;, 0%pald2:0z;, i,j =1, ..., n. Similary as in /16/,

we can verify that the limit relation
lim Pa(l‘, \\") =l’o(lm w‘) (2.7}
a0

is valid for any position ({t., W,} from the region | W, | T r(ly) to <ty <8
We choose some subsequence of numbers {(k; j — {,2....} for which the limit

lim max wmin M {7(E)} = p*(t,, W,) (2.8)
A‘l..x: va(-,-) U%(-,-)}

exists. We prescribe a certain value e > (0. For some value k; we choose some pair of programs
{v* (. ). u* (-, -)}, satisfying the condition

M {y (B)} < p® (ty, W,) + ¢ (2.9)

where the random variable ¥ (§) of (2.2) is determined by the random solution W (f, {-,&18) of
Eq. (2.1) and by the controls uf% (t,E), vl (¢ ). For any &¢>>0 we can find k (¢) such that when
k; > k (¢} we can find, for every program v* (-, ), a program u* (., ) such that condition
(2.9) is fulfilled; this follows from (2.8). We associate the program pair (v* (-, ), u* (-, )}
chosen with the random motion z (t, -, E,al®),zit,, & al ~ Ww,, generated by it, being the stepwise
solution of the stochastic differential equation (§ (!) is the Dirac 8 -function)

=A@tz + B®u,B)+COvEE) T+ . <2,<,“ (8 — t )k 26 (¢ —ty) (2.10)
> k(e). 80 = (B0, j = 1, 2. .. n})
This motion 1z (¢, |-, E, a] &) generates a certain stochastic nonanticipatory program v*{-,. . a)*

determined from the condition

v (L, E a)* = v* (¢, a), <t < ting (2.1

(gtadipa (th z ltiv gv al)c (tx') v* (tiv g) a)‘> + Ufu (tiv gv a)‘ —a | ve (ti’ E’ (1.)‘ ll =v‘énQa')((t») Idem (V‘ (ti‘ Ev (1)* i V*)
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P, PP, 2 A e s on B pwas oada o smamommewmves il Taeen {2 11) ig wnious In f4a Mman
under the conditions introduced such a PIGYHIan v §- =, @) XEOW ALl lilis unigues., <1 ANE OWR

turn we associate w;th this program a program u* (., -, g)* such that condition (2.9} is fulfil-
led for the pair f{u* (-, -, &)*, v* (-, -, a)*}. In such a way, by analogy with the procedure from
/6,17,18/, we obtain a many»valuea mapping of all program pairs {*{-, -, &) ¥v* (-, -, @)} satisfy~
ing condition {2.9) onto a subset {{u*{-, -, &}*, v* (-, -, a)*}} of the same program pairs. As in
/17,187, we can verify that this mapping has a fixed point. Let it be the program pair {u*{.,

s @)y VR (*1 ©2G)e}-  We consider the motion % {fy {-, §,a}fﬁ* generated by this program pair as a
solution of the stochastic differential Eq. (2.10} with 2 .,E,a}- W, For this motion the
controls v*(f, % o), are determined from (2.11). But then, relylng on the fact that the func-—
tion pg (¢, 2z) is a solution of differential Egq.(2.5) with the boundary condition (2. 6), by
arguments customary to the dynamic programming method, we obtain the estimate

*} 2 Pa (L Wo) — 1 (o, k) (2.12)
where
TE =y (i, Lald),, u* (-, a)y, ¥v* (-, -, ), and & k=0 a5 koo, a0

On the other hand, let us consider the motion W ({41, al®), generated by the same

o¥® T x sy de d A

program pair {u* (-, -, )y ¥ (-, *» Bigj,but now as a solution of the stochastic differential Eq.
{2.1). Condition (2.9} with y{&) =7, a) =y (W {, [, & al®, v* (-, -, ady, v* (-, -, @)y} isvalid
for this motion. As the same time, the relation

PM {3 (B @)} — M {y (8 )} [ <L (o, &) (2.13)

where §(a, k)~ 0 as k;— o0, @ 0, is valid for the quantities M {y (§ &)} in (2.9) and M {y (§,
a)y} in (2.12) obtained thus. Now allowing for (2.7), (2.9), (2.12), (2.13), we obtain the
inequality

07 (tay W) < P* (B Wa) {2.14)
We establish the opposite inequality
07 (Bay Wo) > p* (tes Wy) (2.15)

if for the given program v¥* (¢, g} we construct a stochastic nonanticipatery program  u* (¢, )
over the steps i \ < iy, having chosen the controls u u,i, 53 = u° u‘, w 1:,,, g, u*, z,_ﬁ;, €] in accord-
ance with the optimal approximate strategy u°({f, w, ). Inequalities {2.14) and (2.15) can be
obtained for any analogcous sequence {k;}, for which limit (2.8) exists. PFrom {2.14) and (2.15}
it follows that every such limit p* {{,, w,} must coincide with the game’s value p° (iy, Wi). Hence
it follows that limit (2.3) indeed exists and that this limit p, (fy, W,) actually equals the
game's value p°(f,, W) . This completes the proof of Theorem 2.l.

The authors thank Tu.S. Osipov and A.l1. Subbotin for discussing the paper.
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