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STOCHASTIC PROGRAMMED DESIGN 
FOR A DETERMINISTIC POSITIONAL DIFFERENTIAL GAME* 

A.N. KRASOVSKII, N.N. KRASOVSKII and V.E. TRET'IAKOV 

It is shown that under specific sufficiently general conditions 
tional differential game can be found from auxiliary programmed 
include a suitable random process. The paper is a continuation 
/l-12/. 

1. We consider a system described by the differential equation 

x'=A(t)x+B(t)u+C(t)v, UEP, VEQ, to<t<+ 

the value of a posi- 
constructions which 
of the researches in 

where x is the object's s-dimensional phase vector, u and v are, respectively, an r-dimens- 

ional and an S-dimensional control vectors of the first and second players, A (t), B(I), C(t) 
are continuous matrix-valued functions, and P and Q are convex compacta. Let the functional 

v=Y(X(t*]‘lII),~~~*l~l~), v(t*]~lW)= jk~,.Itl)+ 01 (t, u It]) + oz ct, v It])1 a + (J (x Pl) (1.1) 

be prescribed. Here and below the symbol ;*(t,].] t*) denotes the function (Y]t], &< t <t*), 
]t,,1*] C ]t,, 191; the functions u,o~, o1 and e are continuous; the functions w and u satisfy 
Lipschitz conditions in x. By intent, the first player must minimize functional y and the 
second must maximize it. The game is formalized as follows. In (r + I)-dimensional and(s $ l)- 
dimensional spaces, respectively, we consider the sets 

P* (t) = co(U* = (u, 01 (t, u)}, u E P} 
Q' (t) = G (v* = iv, 02 (t. v)), v E Q) 

and we introduce the new control vectors u* = (u = (al*, . ., u,*}, u:,,}, v* = (v = (II,*, . ., v,*),v&} 
constrained by the conditions 

u* E P* (t), v* E Q*(t) (1.2) 

A function which with every possible position (t, x} associates a certain set S(t, X) (pos- 
sibly, empty) of pairs s = (u*, v*) of vectors u* and v* from (1.21, is called a strategyS(t,x). 
Every absolutely continuous function x Itl, x ]t+] = x* satisfying the condition 

x' ]t] = A (t) x It] + B (t) u it] + C (t) v It1 (1.3) 

where 

tu* ItI = tu ItI, u:+, It113 v* ItI = iv ItI, VT+, IfI)) = s ]t] E s (t, x [tl) (1.4) 

for almost all t E ]t,, t*l, is called a motion x (t* [.]t*) generated by strategy S (t, x) from the 
position (t*, x,). We assume that Q 

y = v(x (t* [. It+), U*(t* [.I 6), v* @* I.1 6)) = $Io@, x ItI) + UT+1 PI + 8+1 ItI1 dt + (J @ 161) (1.5) 
1‘ 

on the motion given. A strategy S(t,x) that satisfies the following condition is called first 
player's strategy S, (t,x) . For any segment t 
sible function v*(&_].]t*) we can find a 

* Gt<t*, position (t,,x,) and t -measurable admis- 
t-measurable admissible function II* (t,[.] t*) such 

that the function x(t* I-It*) satisfying (1.3) and the condition x It,] = x* is the motion gener- 
ated by the strategy S (t,x) = S,(t. x), i.e., condition (1.4) with S = S, is satisfied for it 
for almost all tfzft,, t*]. Thesecondplayer's strategy S,(t,x) is defined analogously. 

We say that strategies S,; and S, are compatible if for every choice of (t,,x,} and It,, t*] 
there exists a function x(f, 1.1~‘) which is simultaneously the motion generatedbybothstrategy 

S,, and strategy S, . We say that compatible strategies S,," 
game at the minimax of the functional y of (l.l), 

and S," form a saddle point of the 

for every initial position (t*, r,} 
(1.5) and form the game's value P"(t.s), if 

the inequality 

*Prikl.Matem.Mekhan.,45,4,579-586,198l 
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is valid for every motion T: (r, 1.16) generated by strategy s," and the inequality 

r(x(t*l.l% u+(r*l~16), v*(l*[.l6))~r‘(t*,S*) 

is valid for every motion x (t* 1.18) generated by strategy S.". so, the equality i' 1" (L,. k*) 
is fulfilled for the motion generated simultaneously by strategies s," and S,.". 

The significance of the formalization given is revealed in terms of the approximate strat- 

egies. A function u (t, Y, E)5 P (V (1. Y. F)C-7 Q), where s>O is a small parameter, is called the 
first (second) player's approximate strategy. Suppose that E, a position (t,. s.). an interval 
[f,, f*] and a partitioning A = {TV :: I,. T,+, ; T,, T,, 1") have been chosen. me absolutely 

continuous solution of the stepwise equation 

xk’ItI=‘4(f)x,Elfj-’ /;(f)u(Ti,I~‘ITilrF)-‘-f’(f)yIfl 

XA’ It*] = X1. T, x’: f ,< T,,,, i =- @, f, ., “1 - f 

where the function v If] E Q can be any measurable function, is called the (c. A}-notion 
xbE (f2 I.1 f*) generated by strategy II (f, 1. e) . The (P, A)-motion generated by strategy v (f. X,E) 
is defined analogously. 

We shall examine only the motions x(I,I.I I*) and x&e (f, I.1 t*) starting in the regions 

xl~*/=x,f~lt*l= {I xl <* r(t*)) (1.6) 

r (f*) = Ire -t (f + g)lr,l exp L If, ‘.- f,l - (,t -L g)lf, 

f - Inal 1 B (t) u I. g = max 1 c (t) v 1, I, := max 1 A (I) I 

wherelx [is the Euclidean norm of vector x and 1 A (I) 1 is the Euclidean norm of matrix cl (f). 

For such motions the inclusion x ItI E G ItI is valid for all f E If,, 1.1 . We say that strategy 
u (t,x,e) approximates strategy S,(f,x) if for any <> 0 we can find E (c)> 0 and 6 (5, E)> 0 

s&h #at for any {e, A}- t' mo Ion x~~(i,~[.]it) generated by strategy u(~,x,E) we can find, when 
E < E (c) and map, ('ti+, - t,) << 6 (c, F), a motion x (t* 1.16) generated by strategy S,(f,x), satis- 

fying the conditions 

IY(XAE(t*PI.Io), u(t*“I*]e), v(t*‘l.js))- v(x(f*[‘)@, u+(f*i*l*), v*(t*[.j@)[‘,,; 

1 te - fee 1 < 5, max i xAc It] - x [t] 1 < <, ?t =max (tee9 1,) 
b4fQO 

The following statement is valid. 

Theorem 1.1. The game being examined on the minimax of functional (l.l), (1.5) hasthc 

saddle point (s,,', s,'). The game's value p“ (t, x) satisfies a Lipschitz condition in t and x 

in the region G== (x~GIl],f,< f <6}. The optimal strategies S," and SD0 are approximated 

by suitable optimal strategies u"(1,x,e) and v" (I, x, s). 

The approximate strategies uo(f,x, F) and v"([, X,F) are constructed by the scheme in /7,g/ 

as strategies extremal to the function ~(t,w,w,,,) = p0 (f,w)-t w,,+~, where the vari*les W Id 
and w,+,[t] describing the state of the W-model vary in accord with the equations 

w'=A(t)w+ H(t)u* AC (f)V*, U*EP, V*EQ 
(1.7) 

w;I+r = CO(L, w) + ('11 (L, u+) + wz (L v*) (; S) &. 

Here P (t+t Wet w,,+,+) is the exact upper bound of the values of fi for which there exists in the 

U-model (1.71, (1.8) exists a (p -Q,,..r.,v,+,,,)-procedure /7/ ensuring the inequality %+I 161 

+ u (WIItl) > P for every motion {W itl, Wn.1 It]), t, <c t < 6, generated by this Q-procedure 

from the initial position {f~' We, W,+r*)- In this regard the accompanying point /S/ in the U- 

model (w(I,x,e),~(t,x,e)), corresponding to the current position {t*x)l is determined, when con- 

structing the strategy u'(f,x, E), from the condition min,w,cl ipc (t, w) - cl = p0 it,w(t, X, &)I .-- C (fq 

X, E) under the condition 

1 y - w 12 i c* 6; E (1 - If .- toI) elp (3L If - f,l) !l.‘J) 

or, when constructing the strategy ~'(1, Y, a), from the conditron 

maxC,.,l if)" (L. W) - ~1 = 1~“ if, W (f. X, F)I - c (ft x, F) 

under condition (1.9). AS a result the extremal strategies u'(t,x, E) and v"(f.x, F) are deter- 

mined from the conditions 
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(v”(t, x,~).[x - w(t, x,&)1) -!- c(t, x, F) wz(t, v’ft, x,E)) =minv& Idem (““ftx XZE)--~) 

where (a-b) is the scalar product of vectors a and b. Here and further the Idem inanequal- 
ity's right-hand side denotes an expression coinciding with this equality's left-hand side 

with the change of symbols indicated within the parentheses. 
The strategies Sua(t,x) and S:(t,x) are determined as follows. For a current position 

{t,x}, the strategy s,"(t,s) fixes the set of all pairs s = (u*, v*}, u* F P* (L), v* eQ* (t). 
satisfying the condition 

while strategy s,'(t,s) fixes for a position (t,x} the set of all pairs s = {u*, v*j,u* E P* (L), 

v*EQ* (t), satisfying the condition 

Here y[s] is a function defined by the equality 

y IT] = x + (7 - t) [A (t) x + B (t) u f c (t) VI. z .< t 

Here, obviously, conditions (1.10) and (1.11) replace the well-known dynamic programming rela- 
tions /L3,14/ which would holds in the case of a differentiable value p"(t,x) satisfying the 
partial differential equation of the dynamic programming method. 

2. The construction of the game's value P"(t, x) by the Q-procedure indicatedui;t Fit.1 
is not effective in general. Therefore, neither is the construction of strategies 
v'(t, x,F), 8," (t, x), s,,O (t, x) by this means. The method of constructing the game's value do it, 1) 
and the optimal strategies on the basis of auxiliary programmed constructions /6,8/ is more 
effective. However, this method yields the required solution only under definite regularity 
conditions /8/. Below we describe a certain development of the method of programmed construct- 
ions, which permits us to cover a wider circle of problems. However, a certain additional 
element, in the form of a suitable probability process, is introduced into the auxiliary prog- 
rammed constructions being developed. We shall assume that the functions o(t,x)and ci (x) are 
convex in x. 

Thus, we consider a w*-model whose current state w* = {w = {LO%*, . . . . w,,*}, ~,ff+~) is des- 
cribed, in accord with (1.7)‘ (1.81, by the equations 

w’ = A (‘) w + B @) u -6 c @) vr * * w;l*cl = 0 (t, P) + u,,~ + use,, u* e p*(t), v* E Q*(t) 

Suppose that some initial position (t,,w,*)= (t,,(w*, 0)}, t, 0 6,w, E GIt,l has been chosen. We 
partition the interval It,, 61 by the points ti = t, -I 16 - t,]. (i - 1)/k, i = 1, 2, . . ., k, where 

k is some sufficiently large integer. We consider a sequence E of independent vector-valued 
random variables {Ej(i), j = 1,2, . . ..n}. i = 1,2, _ _ ., k. Each of the variables fjci)can take one of 
the two values Ej(i)+ = 1 and fjG)- =-i with equal probabilities p+ = z/z and p- = =j2. A func- 
tion of t and E = (sjN} with values v* (&,a E Q*(lJ is called a stochastic nonanticipatorypro- 
gram v* (G E) i it possesses the property that for ri Q t-C ti+l> i = 1,2,. .,k, &+I =6 we have 
v* (t, E) = v* (t:, E ft,, &)), where the symbol 5 it,, ti? denotes the realization (fjfs), j = 1, 2, . . ., n, 
s = 1, 2,. _ ., i}. The stochastic nonanticipatory program II* (t, $,)E P* (t) is defined analogous- 

lY* 
Suppose that an initial position {t*, w*) has been given and that a specific value of k 

and a pair of programs {II* (. , s), v* (. , .)) have been chosen. These data define a random process 

w (t* [‘v El f4 which is a stepwise solution of the differential equation 

w' = A (t) w -I- B (4 u (C E) f C (t) v (t, &) (2.1) 

with theinitialcondition w It,] = wwl. This process w(t, [., 61s) and the controls 
v&(t, E) determine the random value of the functional 

u& (4 EJ, 
y(E) in (1.5): 

v(E)=v(w(t* l.*El% u*(t*l*,El*)S v+(t*I*,Elq) ==w:+,~~lia(wI61) 

We consider the function 

(2.2) 
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where the symbol M (I’) d enotes the mathematical expectation. The definition (:!.<I :,f [ilk% 
function p.+ (f,w) is well posed. As a matter of fact, the minimum and the maximum in t_hC. 
right-hand side of (2.3) are actually reached on certain programs u*(., .) and Y* (., .) since. 

M {v(E)) is a continuous function of a finite number of variables, specified on a compactum. 
The existence of the limit in (2.3) is established during the proof of the next Theorem 2.1. 

Theorem 2.1. The function p*(f,w) in (2.3) is the value p"(t, W) of the positionaldrf- 
ferential game considered in Sect.1. 

The theorem is proved as follows. In the region 

I z I < 2r (6), 1, $, f ‘5 6 ! 2 .A ! 

where r(e) is computed by (1.6), we construct the function 

H, (p, 2, t) = min max I<p.[A(t)z+ H(l)u +C(t)vl> b (I) (t, 2) + UT+, + uZ+, -- a) v* 1’1 
u*EPu) lezQ’(I) 

where Cc is some small positive number. Further, we construct the function F, (p.e. 1) which has 
derivatives of all orders, satisfies a Lipschitz condition in the first argument and vanishes 

outside a sufficiently large region G* in space (t.z), containing region (2.4). In addition, 
let the condition 

I Ha (p.z. I) -.- F, (p, z. 1) 1 _= a 

be fulfilled for all values of arguments p and z, t fromregion (2.4). Let us consider the part- 
ial differential equation for a certain function pa(t,z): 

(2.5) 

Let o(z.a) be a function convex in z for Iz ) .< 2r(6), having derivatives of all orders, sat- 

isfying the condition 1 O(Z) - o(z, u) 1 < a when (z 1 <b(6) and vanishing for all sufficient- 

ly large values of Iz I. Under the boundary condition 

PO (a, z) = c (z, a) (2.6) 

Eq.(2.5) has /15/ a solution &(f,z) which in any preselected region IZ 1 <R, fr< I <6 has 

the continuous partial derivatives ~3p=/~Yt, dpoiaz,, azp,/dziaz,, i, j = I. ,, R. Similary as in /16/, 

we can verify that the limit relation 

limpa(t,, w+) =o"(f,, w*) (2.71 
a-0 

is valid for any position {f,,w,) from the region 1 w. I < r(t*), f, < 1, < 6 
We choose scme subsequence of numbers (k,,j _ f,3...,) for which the limit 

lim max rnin M (p (5)) = p* (t+, we) 
A,'^ et...) lr(...) 

(2.8) 

exists. We prescribe a certain value E > 0. For some value It, we choose scmepairofprograms 

(v' (.* .). u* (*, *)). satisfying the condition 

M (P (5)) c P+ (t*, w*) + e (2.9) 

where the random variable Y (5) of (2.2) is determined by the random solution u' (f+ 1.2 El 6) of 

Eq. (2.1) and by the controls & (t, 5). uf,, (1, E). For any E > 0 we can find k(E) such that when 

kj > k(e). we can find, for every program v* (., .), a program II* (.. .) such that condition 

(2.9) is fulfilled; this follows from (2.8). We associate the program pair (v' (.. .), II+ (._ .)) 

chosen with the random motion z(f, I., k,al6),z rt,,g. al Y- W+, generated by it, being the stepwise 
solution of the stochastic differential equation (6(t) is the Dirac 6-function) 

z’ = A (t) z -t B(t) u (1, E) -t c (t) V (t, E) -1- 2 , ~I Cta I(t) --t,)/kj]'!z6("6 (t -t,) 
l I 

(k, ‘2 k (E). 5”’ = (sj”‘. j = 1, 2. . . . n)) 
This motion z (1, I., 5. al 6) generates a certain stochastic nonanticipatory program \.* 

determined from the condition 

v*(t,&a)* = v*(tl,E,a)*, (1 <f <t,+, 

(grad,p, (t,, z [ti, E, al).C (ti) v* (tiv E, a)*> + tl:+, (1,. &, a)* - (11 V* (ti! 5, a)* \‘=I-F;<, ) Idem (V* (ti? Et a)* 

(2.10) 

‘q ..a) )I 

(2.11) 

l v’) 
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Under the conditions introduced such a program Y* (.,.,a)* from (2.11) is unique. In its awn 

turn we associate with this program a program u* (., .1 a] * such that condition (2.9) is fulfil- 
lea for the pair fu* f.. .,a)*,~* (*, .,a)* }. In such a way, by analogy with the procedure from 
/6,17,18/, we obtain a many-valued mapping of all program pairs @"(*I ',a)+v* f*, ..a)) satisfy- 
ing condition (2.9) onto a subset ((u*(.+ .ru)*rv*(+,*, a)*)) of the same program pairs. As in 
117,181, we can verify that this mapping has a fixed point. Let it be the program pair (u*f., 

*,u)*,v*(*, *,a),). we consider the motion Z (i* 10, &af6)* generated by this program pair as a 
solution of the stochastic differential Eq.(Z.fO) with s It,, &a)= we. For this motion the 

controls ~*@~,&a), are determined from (2.11). But then, relying on the fact that the func- 
tion pb(&z) is a solution of differential Eq.(2.5) with the boundary condition (2.61, by 
arguments customary to the dynamic programming method, we obtain the estimate 

where 

r (E, a)* = y (z(i* t*, 5, al6)*, u* (., +, tc)*, v* (., ', a)*) and 13 (a* &I+@ as h&m+ @-+@- 

On the other hand, let us consider the motion w(&[*, &al*), generated by the same 
program pair (a* f-. et a),, v* (*t -3 af*),but now as a solution of the stochastic differential Eq. 
(2.11. Condition (2.9) with y(g) = y (E, a) = y fw @,[h, 8, al@,, U* f., ., a),, v*f., ., a)*) is valid 
for this motion. As the same time, the xelation 

I Jf {Y (Et 4) - M fy (Et &I i G S (a, kJ (2.13) 

where c(a, kj)-+ 0 as kj-tm, u--t 0, is valid for the quantities M {y&a)} in (2.9) and N {y(& 
a)*) in (2.12) obtained thus. Now allowing for (2.71, (2.91, (2.121, (2.13), we obtain the 

inequality 

p" (t*, w*) < P* ft*% 4 (2.14) 

me establish the opposite inequality 

PO (&., %f > P* (88. w+) (2.15) 

if for the given program v* (t,E) we construct a stochastic nonanticipatory program n* f& t;) 
over the steps tj .< t < fi+l* having chosen the controls u its, tf = u" [ti, w iti, E it,, ti_& E] in accord- 
ance with the optimal approximate strategy u"(&w,E). Inequalities I2.141 and (2.15) can be 
obtained fox anyanalogous sequence (kj), for which limit (2.8) exists. From (2.14) and 12.15) 
it follows that every such limit p*(f,, w,) must coincide with the game's value p'(E*,W*). Hence 
it follows that limit (2.3) indeed exists end that this limit &(t,,w,) actually equals the 
game's value pa (t*, w*) . This completes the proof of Theorem 2.1. 
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